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Midterm Practice Problems

The midterm exam is coming up a week from today, so to help you prepare and practice, here's a
collection of random questions on assorted topics from throughout the quarter. Feel free to work
through these to review the course topics and sharpen your skills!

Balanced Trees
Red/black trees are an isometry of 2-3-4 trees (B-trees of order two). It's possible to encode other
types of B-trees as binary search trees by using more colors.

A B-tree of order four is a B-tree where non-root nodes have between three and seven keys and
where the root node has between one and seven keys. A red/black/blue tree is a BST where each
node is  colored red, black, or blue according to a set  of color rules. Just as the color rules for
red/black trees enforce the isometry with B-trees of order two, the color rules for red/black/blue
trees enforce the isometry with B-trees of order four.

Your job in this problem is to develop color rules for red/black/blue trees that enforce an isometry
with B-trees of order four. Specifically, your color rules should have the following properties:

• Any red/black/blue tree obeying the color rules encodes a B-tree of order four.

• Any B-tree of order four can be encoded as a red/black/blue tree obeying the color rules.

Splay Trees
Let S = { x₁, x₂, …, xₙ } be a set of keys in a splay tree where x₁ < x₂ < … < xₙ. Prove that if you
perform a sequence of lookups of x₁, x₂, …, xᵢ, in that order, then the resulting splay tree will have
the following structure:

• The root will be xᵢ.

• The right subtree consists of an arbitrary key containing all keys greater than xᵢ.

• The left subtree will be a degenerate tree consisting of a left spine holding keys x₁, …, x ₋ᵢ ₁.

Aho-Corasick String Matching
Suppose that you have a set of pattern strings P₁, …, Pₖ of total length n where no pattern string is a
substring of any other. Building an Aho-Corasick automaton for these strings takes time O(n).

Prove that the time required to find all matches of these patterns in a string of length m using the
matching automaton is O(m).



 

String Searching
Suppose that you have a pattern string P consisting of a mixture of characters and wildcard symbols, de-
noted ★. The pattern string P matches a string T if there is some way to align P inside of T such that all
non-wildcard characters of P match the corresponding characters in T. The wildcard symbol is allowed to
match any character.

For example, given these strings:

T = alphabetagammadelta    P = hab t★

we see that P matches at the following spot in T:

alphabetagammadelta
   hab t           ★

Design an O(m + n + km)-time algorithm for determining whether a pattern string P containing k wild-
cards matches anywhere in T.

Suffix Trees and Suffix Arrays
A plasmid is a ring of DNA. For example, here are some small plasmids:
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We can represent a plasmid as a string by starting at an arbitrary location in the plasmid and listing the
characters in clockwise order. Because plasmids don't have a definitive start or end point, there can be
many different representations of the same plasmid. For example, below is a plasmid and all six strings
that represent it:

A
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T
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ATTACG

TTACGA

TACGAT

ACGATT

CGATTA

GATTAC

In many biological applications, for simplicity, it helps to choose a single string as a “canonical” repre-
sentation of a plasmid. One simple way to do this is to choose the lexicographically smallest string that
represents that plasmid. For example, the above plasmid would be represented as ACGATT.

Design an algorithm that, given a string T representing a plasmid, outputs the lexicographically small-
est string representing that plasmid. Your algorithm should run in time O(m), where m is the length of
the string T. Then, prove that your algorithm is correct.

As a hint, build a suffix tree or suffix array, but not for the input string T.



 

Count Sketches
In the count sketch data structure, each row consists of an array w of counters. We then choose two hash
functions h : 𝒰 → [w] and s : 𝒰 → {+1, -1}, where h sends each element into a slot in the table and s de-
termines whether we increment or decrement the counter when processing the element. To increment(x),
we add s(x) to count[h(x)]. To estimate(x), we return count[h(x)] · s(x).

You can interpret the hash function  s as assigning a  direction to each element  x ∈ 𝒰, where +1 means
“up” and -1 means “down.” The estimate(x) procedure then works by returning the net number of steps in
the direction indicated by s(x) the counter at position h(x) has taken.

We can generalize this so that each counter is a 2D point as follows. Change s so that it now maps from
𝒰 to the set {up, down, left, right} and replace each counter in the array count with a point in 2D space.
To increment(x), we compute h(x) to determine which slot x belongs in, then adjust the point in that slot
by moving it one step in the direction given by s(x). To estimate(x), we compute h(x) and look at the point
it corresponds to. We then return the net number of steps in the direction given by  s(x) that point has
taken from the origin. For example, if x is assigned the direction “left,” then we return the net number of
steps to the left of the origin that the corresponding point has taken.

Compare this modified version of the count sketch to the original version of the count sketch in terms of
time, space, accuracy, and confidence. Justify your answer.



 

Hashing and Sketching
In this problem, you'll analyze a randomized data structure called a group tester that identifies frequent el-
ements in a data stream. Let 𝒰 = { x₁, …, x  ₙ } be a set of n elements. Suppose that we have a stream of
elements drawn from 𝒰. Let a be the frequency vector for the stream, where aᵢ is the frequency of xᵢ.

For any positive integer k, a k-heavy-hitter in the data stream is an element x  ᵢ where aᵢ > ||a||₁ / (k + 1).
All data streams have at most k distinct k-heavy-hitters, though some may have fewer than k.

A group tester is a randomized data structure for finding k-heavy-hitters. The group tester is parameter-
ized over two values – an integer k and a probability δ – and supports the following operations:

• gt.increment(x), which increments the frequency of element x, and

• gt.find-heavy-hitters(), which returns a list of elements that, with probability at least 1 – δ, con-
tains all of the k-heavy-hitters.

Like the count sketch and count-min sketch, the group tester consists of multiple independent rows that
produce independent estimates that are then aggregated together. In the first two parts of this problem,
you'll analyze individual rows of the group tester. In the third, you'll analyze the overall data structure.

Each row in a group tester consists of an array of 2k buckets. We'll associate with each row a hash func-
tion h : 𝒰 → [2k] chosen from a family ℋ of pairwise-independent hash functions.

For each j in the range 0 ≤ j < 2k, define Sj ⊆ 𝒰 to be the set of all elements in 𝒰 that hash to slot j in the
table. Formally:

Sj = { x ∈ 𝒰  | h(x) = j }

Next, define Nj to be the total frequency of all elements that hash to slot j. Formally:

N j=∑xi∈S j
ai

(i) Heavy Hitter Distributions

Let x  ᵢ be a k-heavy-hitter. Prove that if x  ∈ Sᵢ j, then

E [N j−ai] <
∥a∥1

2 (k +1)

In other words, the expected total frequency of all the elements that hash to slot h(xᵢ), excluding xᵢ, is less
than ||a||₁ / 2(k + 1).

You may find the following fact useful: a family of hash functions ℋ from 𝒰 to [m] is pairwise inde-
pendent iff for any distinct x, y ∈ 𝒰 and for any r, s ∈ [m], the following holds:

Pr
h∈ℋ

[h( x)=r  | h( y)=t ] =
1
m

As a hint, first try proving that

E [N j−ai] =
1

2k ∑
s≠i

as

and simplifying the right-hand side to get the desired result.



 

Using Markov's inequality on your result from part (i), we can prove that if x  ᵢ is a k-heavy-hitter that
hashes to bucket j, then

Pr [N j−ai ≤
∥a∥1

k+1 ] ≥ 1/ 2

(ii) Majority Elements

An element x  ᵢ in a data stream is called a majority element if strictly more than half the elements in the
data stream are copies of xᵢ. Prove that if x  ᵢ is a k-heavy-hitter, then with probability at least ½ it will be
a majority element in the bucket it hashes to.

You can take the following as a given:

There is a space-efficient data structure that supports increment(x), which increments the fre-
quency of element  x, and and find-majority(), which returns a majority element if one exists
and returns nothing otherwise.

Each row in a group tester consists of 2k buckets, where each bucket is a majority element data struc-
ture. Within a single row of the group tester, we perform increment(x) by going to the h(x)th majority
element data structure and calling increment(x). Similarly, within a single row of the group tester, we
evaluate find-heavy-hitters() by calling find-majority() on each of the majority element data structures
and returning the set of all elements reported this way.

The overall group tester data structure then consists of  d rows, each with its own hash function. The
overall increment(x) operation calls incrememt(x) on each row, and the overall find-heavy-hitters() op-
eration returns the union of the sets returned by find-heavy-hitters in each row.

(iii) Amplifying the Probability

Prove that in a group tester with d rows, the probability that the reported set of k-heavy-hitters actually
includes each of the k-heavy-hitters from the data stream is at least 1 – k / 2d. This means that if we pick
d = lg (k / δ), then with probability at least 1 – δ the data structure will find each of the k-heavy-hitters. 

It's okay if the reported set also contains some elements that aren't  k-heavy-hitters; you don't need to
worry about this.


